Maternal Uniparental Disomy 14 Syndrome Demonstrates Prader-Willi Syndrome-Like Phenotype

Kana Hosoki, MS, Masayo Kagami, MD, PhD, Touju Tanaka, MD, PhD, Masaya Kubota, MD, PhD, Kenji Kurosawa, MD, PhD, Mitsuhiro Kato, MD, PhD, Kimiaki Uetake, MD, Jun Tohyama, MD, PhD, Tsutomu Ogata, MD, PhD, and Shinji Saitoh, MD, PhD

Objective To delineate the significance of maternal uniparental disomy 14 (upd(14)mat) and related disorders in patients with a Prader-Willi syndrome (PWS)–like phenotype.

Study design We examined 78 patients with PWS-like phenotype who lacked molecular defects for PWS. The *MEG3* methylation test followed by microsatellite polymorphism analysis of chromosome 14 was performed to detect upd(14)mat or other related abnormalities affecting the 14q32.2-imprinted region.

Results We identified 4 patients with upd(14)mat and 1 patient with an epimutation in the 14q32.2 imprinted region. Of the 4 patients with upd(14)mat, 3 had full upd(14)mat and 1 was mosaic.

Conclusions Upd(14)mat and epimutation of 14q32.2 represent clinically discernible phenotypes and should be designated "upd(14)mat syndrome." This syndrome demonstrates a PWS-like phenotype particularly during infancy. The *MEG3* methylation test can detect upd(14)mat syndrome defects and should therefore be performed for all undiagnosed infants with hypotonia. (*J Pediatr 2009*; \blacksquare : \blacksquare - \blacksquare).

A aternal uniparental disomy 14 (upd(14)mat) is characterized by prenatal and postnatal growth retardation, neonatal hypotonia, small hands and feet, feeding difficulty, and precocious puberty.¹ Chromosome 14q32.2 contains several imprinted genes, and loss of expression of paternally expressed genes including *DLK1* and *RTL1* is believed to be responsible for upd(14)mat phenotype.² Thus far, 5 patients with epimutations and 4 patients with a microdeletion affecting the 14q32.2 imprinted region have been reported to have upd(14)mat-like phenotype.²⁻⁴ Paternal uniparental disomy 14 (up-d(14)pat) shows a distinct and much more severe phenotype characterized by facial abnormality, bell-shaped thorax and abdominal wall defects.¹ Initially, upd(14)mat was identified in patients with Robertsonian translocations involving chromosome 14, but increasing numbers of patients with a normal karyotype have been recognized.^{1,5} Because maternal uniparental disomy 15 is responsible for the condition in more than 20% of patients with Prader-Willi syndrome (PWS), of which the overall prevalence is more than 1 in 15000 births,⁶ one could suspect that upd(14)mat is underestimated. Phenotype of upd(14)mat is known to resemble that of PWS, which is characterized by neonatal hypotonia, small hands and feet, mental retardation, and hyperphagia resulting in obesity beyond infancy. Mitter et al⁷ recently reported that upd(14)mat was detected in 4 of 33 patients who were suspected to have PWS and raised the question that upd(14)mat could be present in patients with PWS-like phenotype. Thus we examined patients who presented with PWS-like phenotype, but in whom PWS had been excluded.

Methods

The median age of the 78 patients enrolled in the study was 18.5 months, and the range was 1.4 to 324 months. Sex ratio was 1:1. All patients demonstrated PWS-like phenotype including hypotonia during infancy. We initially performed the *SNURF-SNRPN* DNA methylation test, and normal methylation results excluded the diagnosis of PWS.⁸

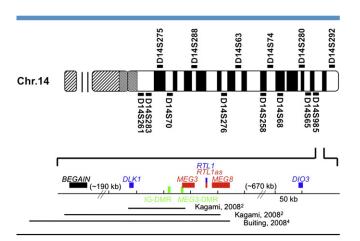
This study was approved by the Institutional Review Board Committees at Hokkaido University Graduate School of Medicine and National Center for Child Health and Development. The parents of the patients gave written informed consent.

DNA methylation status at the promoter region of imprinted *MEG3*, located in 14q32.2, was examined (**Figure 1**). Genomic DNA was extracted from leukocytes and treated with sodium bisulfite, and methylated allele– and unmethylated allele–specific primers were used to polymerase chain reaction amplify each allele, as described previously.⁹ If aberrant DNA methylation was identified,

PWSPrader-Willi syndromeUpd(14)matMaternal uniparental disomy 14Upd(14)patPaternal uniparental disomy 14

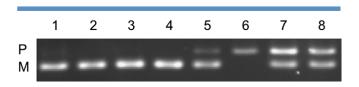
From the Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo (K.H., S.S.), the Department of Endocrinology and Metabolism (M.Kagami, T.O.), the Division of Clinical Genetics and Molecular Medicine (T.T.), and the Department of Pediatric Neurology (M. Kubota), National Research Institute for Child Health and Development, Tokyo, the Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama (K.K.), the Department of Pediatrics, Yamagata University School of Medicine, Yamagata (M. Kato), the Department of Pediatrics, Obiliro Kosei Hospital, Obihiro (K.U.), and the Department of Pediatrics, Nishi-Niigata Chuo National Hospital, Niigata (J.T.), Japan

This work was partially supported by a grant from the Ministry of Education, Science and Culture of Japan. The authors declare no conflicts of interest.


0022-3476/\$ - see front matter. Copyright © 2009 Mosby Inc. All rights reserved. 10.1016/j.jpeds.2009.06.045

THE JOURNAL OF PEDIATRICS • www.jpeds.com

we carried out microsatellite polymorphism analysis for 16 loci on chromosome 14 (ABI PRISM Linkage Mapping Set v2.5; Applied Biosystems, Foster City, California) with DNA from the patients and their parents (**Figure 1**). Polymerase chain reaction products were analyzed on an ABI310 automatic capillary genetic analyzer and with Gene-Mapper software (Applied Biosystems). If aberrant DNA methylation was identified but the patient demonstrated biparental origin of the chromosome 14s, we further examined the chromosomes for DNA methylation state, parental origin, and microdeletion in 14q32.2, as described previously.^{2, 3}


Results

We identified abnormal hypomethylation at the MEG3 promoter in 5 of 78 patients (Figure 2). Almost complete lack of methylation was found in 4 patients (case 1 to 4), but 1 patient (case 5) demonstrated faint methylation. Polymorphism studies demonstrated that 3 (cases 2 to 4) of the 4 patients with complete lack of MEG3 promoter methylation had complete upd(14)mat, but 1 patient (case 1) had inherited both parental alleles (Table I; available at www. jpeds.com). We further examined the DNA methylation state and microdeletion or segmental upd at 14q32.3, and concluded that this patient (case 1) had an epimutation. The detailed data have been reported previously.³ The patient (case 5) with faint MEG3 methylation was demonstrated to have 2 maternal alleles, as well as 1 paternal allele with lower signal intensity. This indicated mosaicism of upd(14)mat (80%) and a normal karyotype (20%) (Figure 3; available at www.jpeds.com).

Figure 1. Schematic map of the 14q32.2 imprinted region. Loci on chromosome 14 represent markers used for microsatellite polymorphism analysis. Paternally expressed genes are shown in *blue*, maternally expressed genes in *red*, and nonimprinted genes are shown in *black*. Differentially methylated regions (DMRs) are shown in *green*. *IG-DMR*, Intergenic DMR. Reported microdeletions are demonstrated as *horizontal bars*.

Figure 2. *MEG3* methylation test. *P*, Paternal methylated signal; *M*, maternal unmethylated signal; *1-5*, cases 1-5, respectively; *6*, paternal uniparental disomy 14; *7*, patient with PWS; *8*, normal control. Cases 1-4 show only the maternal unmethylated signal, and case 5 shows a faint paternal methylated signal.

The profiles of the patients with upd(14)mat or an epimutation are shown in **Table II**. We compared clinical features in these patients (**Table III**). All patients were referred to us during infancy because of hypotonia and motor developmental delay. Small hands and feet were also present in all patients. Prenatal growth retardation was present in all but 1 patient (case 1) who was later shown to have an epimutation. However, this patient had development of postnatal growth retardation, which was present in all patients. Premature onset of puberty was not evaluated in this study because the patients were too young. Apparent intellectual delay was only present in the patient who had upd(14)mat mosaicism (case 5). The clinical features of the patients with epimutation or with mosaic upd(14)mat were not distinct from those of the patients with full upd(14)mat.

Discussion

We detected 5 patients with upd(14)mat or epimutation at the 14q32.2-imprinted region in 78 subjects who had initially been suspected to have PWS. Mitter et al⁷ reported that upd(14)mat was detected in 4 of 33 patients who were suspected to have PWS. However, Cox et al¹⁰ reported that they did not find any upd(14)mat in 35 patients suspected to have PWS. Our study suggests that a significant number of patients with upd(14)mat are suspected to have PWS during infancy. To clarify how upd(14)mat and PWS share clinical features, we examined the clinical manifestations of our patients with upd(14)mat or an epimutation. All patients showed neonatal hypotonia and were referred to us during infancy. Feeding difficulty in the neonatal period and small hands and feet were also common to these patients and resembled features of PWS. It is noteworthy that all patients were referred during infancy, suggesting that upd(14)mat and PWS resemble each other, particularly during this period. Therefore upd(14)mat and related disorders, as well as PWS, should be important differential diagnoses for infants with hypotonia and feeding difficulty. Distinct features for upd(14)mat included less-specific facial characteristics, constant prenatal growth failure, and better intellectual development. Precocious puberty is not present in PWS; however, this was not evaluated in this study because the patients were not

	Case 1	Case 2	Case 3	Case 4	Case 5
Molecular class	Epimutation	Upd(14)mat	Upd(14)mat	Upd(14)mat	Upd(14)mat (mosaic
Age	2 y 2 m	4 y 2 m	2 y 7 m	1 y 9 m	3 y 4 m
Sex	Female	Male	Female	Female	Female
Karyotype	46,XX	46,XY	46,XX	46,XX	46,XX
Gestational age	41 w 5d	36 w 1 d	37 w 3 d	40 w 4 d	36 w
Birth weight g (SD)	3034 (0)	1955 (-2.6)	1680 (-3.3)	1858 (-2.8)	1434 (-3.9)
Birth length cm (SD)	50 (+0.7)	45.7 (-1.5)	40 (-4.0)	45 (-1.6)	39 (-3.9)
Birth OFC cm (SD)	Unknown	32 (-1.0)	30.4 (-2.0)	32 (-0.8)	30 (-2.2)
Present height cm (SD)	76.1 (-3.1)	89.5 (-2.8)	79 (-2.7)	72.5 (-3.4)	77.8 (-4.5)
Present weight kg (SD)	8.18 (-2.4)	11.6 (-2.1)	8.4 (-2.8)	6.4 (-3.7)	8.84 (-3.3)
Present OFC cm (SD)	45.2 (-1.5)	51.0 (+0.5)	48 (0)	44 (-1.8)	46.0 (-1.6)

old enough to demonstrate this feature. It is possible that when the patients get older, the clinical features of upd(14)mat may become more distinct from those of PWS.

We detected an epimutation in the 14q32.2-imprinted region, as well as upd(14)mat. The clinical features of the patient with the epimutation were grossly similar to those of patients with upd(14)mat. Thus far 5 patients with an epimutation in the paternal allele, including our patient, have been identified.^{4,11} These patients exhibit clinical features indistinguishable from those with full upd(14)mat. Our patient with an epimutation demonstrated normal birth weight, but previously reported patients with an epimutation have shown intrauterine growth retardation.^{4,11} Therefore normal birth weight is not a specific feature related to epimutation.

One of the patients with upd(14)mat was mosaic for upd(14)mat and normal karyotype. It is not easy to understand the pathogenesis of such a mosaic, but similar mosaicism of chromosome 15 has been reported.¹² Mosaicism for upd(15)mat and normal cell lines has been found in a patient with the PWS phenotype.¹² Similarly, our patient with mosaic upd(14)mat demonstrated typical clinical features of upd(14)mat. This could be explained by the small proportion of normal cell lines (less than 20%), or it could be that the level of mosaicism is different in each tissue. It is possible that the proportion of normal cells may be lower in the

brain, which is most responsible for the phenotype of upd(14)mat.

As is clear in our series of patients, upd(14)mat phenotype can be caused by an epimutation of 14q32.2. Recently, Kagami et al² reported a microdeletion in 14q32.2 associated with a similar phenotype (Figure 1). Buiting et al^4 also reported a patient with a 1Mb deletion at 14q32.2 (Figure 1). Therefore upd(14)mat phenotype is associated with not only upd(14)mat but an epimutation or small deletion. This genetic complexity is similar to that of PWS. PWS is caused by paternal deletion of 15q11-q13, maternal uniparental disomy of chromosome 15, and epimutation (imprinting defect). A new name such as upd(14)mat syndrome would be appropriate to represent the entire upd(14)mat clinical features represented by upd(14)mat, epimutation of 14q32.2 and microdeletion in 14q32.2. Alternatively, Buiting et al⁴ suggested the term, "Temple syndrome," because upd(14)mat was first described by Dr. I. K. Temple in 1991, who subsequently described an epimutation in 2007.^{4,5,11}

Finally, it should be emphasized that the *MEG3* methylation test could detect not only upd(14)mat but an epimutation and small deletions involving *MEG3*. This is because the *MEG3* DMR that is used for the diagnostic DNA methylation test is involved in the shortest region of overlap of the microdeletions (**Figure 1**). It is therefore a powerful method for screening patients with upd(14)mat syndrome.

	Present study					Previous studies					
	Case 1	Case 2	Case 3	Case 4	Case 5	Upd(14)mat (n = 35)	Epimutation ($n = 4$)	Microdeletion ($n = 4$)			
Premature delivery	_	_	_	_	_	10/25	0/4	0/3			
Prenatal growth failure	_	+	+	+	+	24/27	4/4	3/3			
Postnatal growth failure	+	+	+	+	+	26/32	3/4	3/3			
Somatic features	+	+	+	+	+	23/35	4/4	3/3			
Frontal bossing	+	+	+	+	_	9/9					
High arched palate	_	+	+		+	7/9					
Micrognathia	+	+	_	+	+	5/5					
Small hands	+	+	+	+	+	24/27	4/4	3/3			
Scoliosis	_	_	_	_	_	5/19					
Others											
Hypotonia	+	+	+	+	+	25/28	4/4	1/1			
Obesity	_	_	_	_	_	14/34	3/4	1/4			
Early onset of puberty	NA	NA	NA	NA	NA	14/16	3/4	2/3			
Mental retardation	_	_	_	_	+	10/27	2/4	1/4			

NA. Not applicable.

Previous studies are based on references 2, 3 and 4.

ARTICLE IN PRESS

THE JOURNAL OF PEDIATRICS • www.jpeds.com

Upd(14)mat syndrome demonstrates PWS-like phenotype during infancy, and it should be considered when seeing a patient with hypotonia. The *MEG3* methylation test should be performed to identify this syndrome.

The authors thank Dr. T. Ariga for critical reading of the manuscript.

Submitted for publication Mar 20, 2009; last revision received May 6, 2009; accepted Jun 22, 2009.

Reprint requests: Shinji Saitoh, MD, PhD, Department of Pediatrics, Hokkaido University, Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, 060-8638, Japan. E-mail: ss11@med.hokudai.ac.jp.

References

- Kotzot D, Utermann G. Uniparental disomy (UPD) other than 15: phenotypes and bibliography updated. Am J Med Genet A 2005;136: 287-305.
- 2. Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, et al. Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet 2008;40:237-42.
- Hosoki K, Ogata T, Kagami M, Tanaka T, Saitoh S. Epimutation (hypomethylation) affecting the chromosome 14q32.2 imprinted region in a girl with upd(14)mat-like phenotype. Eur J Hum Genet 2008;16:1019-23.
- 4. Buiting K, Kanber D, Martín-Subero JI, Lieb W, Terhal P, Albrecht B, et al. Clinical features of maternal uniparental disomy 14 in patients

with an epimutation and a deletion of the imprinted DLK1/GTL2 gene cluster. Hum Mutat 2008;29:1141-6.

- 5. Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet 1991;28:511-4.
- 6. Nicholls RD, Saitoh S, Horsthemke B. Imprinting in Prader-Willi and Angelman syndromes. Trends Genet 1998;14:194-200.
- 7. Mitter D, Buiting K, von Eggeling F, Kuechler A, Liehr T, Mau-Holzmann UA, et al. Is there a higher incidence of maternal uniparental disomy 14 [upd(14)mat]? Detection of 10 new patients by methylationspecific PCR. Am J Med Genet A 2006;140:2039-49.
- Kubota T, Das S, Christian SL, Baylin SB, Herman JG, Ledbetter DH. Methylation-specific PCR simplifies imprinting analysis. Nat Genet 1997;16:16-7.
- **9.** Murphy SK, Wylie AA, Coveler KJ, Cotter PD, Papenhausen PR, Sutton VR, et al. Epigenetic detection of human chromosome 14 uniparental disomy. Hum Mutat 2003;22:92-7.
- **10.** Cox H, Bullman H, Temple IK. Maternal UPD(14) in the patient with a normal karyotype: clinical report and a systematic search for cases in samples sent for testing for Prader-Willi syndrome. Am J Med Genet A 2004;127A:21-5.
- Temple IK, Shrubb V, Lever M, Bullman H, Mackay DJ. Isolated imprinting mutation of the DLK1/GTL2 locus associated with a clinical presentation of maternal uniparental disomy of chromosome 14. J Med Genet 2007;44:637-40.
- 12. Horsthemke B, Nazlican H, Hüsing J, Klein-Hitpass L, Claussen U, Michel S, et al. Somatic mosaicism for maternal uniparental disomy 15 in a girl with Prader-Willi syndrome: confirmation by cell cloning and identification of candidate downstream genes. Hum Mol Genet 2003;12:2723-32.

_
_
_
1.1.
1 10 10 1
1 ° 1 1
18.
U)
1 ° 1 1

2009

ORIGINAL ARTICLES

			Case 1 famil	se 1 family		Case 2 family			Case 3 family			Case 4 family			Case 5 family	
Locus	Region	Patient	Father	Mother	Patient	Father	Mother	Patient	Father	Mother	Patient	Father	Mother	Patient	Father	Mother
D14S261 D14S283 D14S275 D14S70 D14S288 D14S276 D14S63 D14S258 D14S258 D14S258 D14S280 D14S65 D14S280 D14S282 D14S292	14q11.2 14q11.2 14q12 14q12.1 14q22.3 14q23.2 14q24.2 14q24.3 14q31.3 14q32.12 14q32.2 14q32.2 14q32.33	298, 298 147, 149 146, 146 100, 102 191, 201 241, — 187, 187 204, 206 299, 313 323, 323 246, 248 135, 141 255, 255 84, 86	274, 298 139, 149 146, 156 102, 102 201, 203 239, 241 187, 187 196, 206 260, 299 323, 323 248, 248 135, 135 251, 255 84, 86	298, 298 137, 147 146, 146 100, 104 191, 207 247, — 187, 187 202, 204 303, 313 323, 323 246, 246 135, 141 255, 257 86, 86	297, 297 139, 139 149, 149 101, 101 201, 201 242, 244 187, 193 196, 196 303, 303 321, 321 243, 243 145, 145 250, 250 92, 92	297, 299 137, 137 145, 145 101, 103 203, 203 244, 246 183, 189 198, 202 303, 305 323, 323 243, 245 135, 149 246, 254 86, 88	297, 297 139, 139 149, 151 101, 201 242, 244 187, 193 196, 196 303, 303 321, 321 243, 243 135, 145 250, 254 88, 92	298, 298 137, 149 148, 152 103, 103 193, 193 244, 244 183, 187 196, 196 299, 303 321, 323 247, 247 135, 147 247, 247 85, 87	296, 298 133, 137 146, 146 99, 101 193, 203 242, 244 189, 191 200, 202 299, 301 323, 323 243, 247 137, 145 249, 249 83, 85	298, 298 137, 149 148, 152 103, 103 193, 193 244, 244 183, 187 196, 196 299, 303 321, 323 247, 247 135, 147 247, 247 85, 87	297, 297 150, 150 155, 155 104, 104 195, 195 245, 245 191, 191 202, 202 295, 295 323, 323 248, 248 150, 150 248, 248 92, 92	297, 297 142, 150 149, 155 104, 106 213, 215 241, 241 185, 195 204, 204 305, 313 325, 325 244, 244 150, 150 246, 248 86, 92	275, 297 140, 150 149, 155 104, 104 195, 197 245, 245 191, 195 202, 204 295, 301 321, 323 242, 248 150, 150 248, 254 88, 92	275, 297, 297 139, 139 146, 148, 152 101, 101, 103 190, 196, 204 244, 246, 246 187, 189, 193 196, 196, 198 299, 301, 305 321, 321, 323 241, 243, 247 135, 147 247, 249 87, 89	275, 299 137, 139 152, 156 101, 103 188, 196 242, 244 187, 193 198, 200 299, 305 323, 323 241, 245 147, 147 247, 253 89, 89	273, 29 139, 14 146, 14 101, 10 190, 20 246, 24 187, 18 196, 19 299, 30 321, 32 243, 24 135, 14 247, 24 87, 89
				from the mother, but 1 small arrow is transmitted from the markers.	Figure 3. Microsatellite pc for the family of case 5. Th (146, 148, 152 bp), 2 (146,	Mother Figure 3. Microsatellit for the family of case 5					Father		Patient			
				from the mother, but 1 small peak (152 bp) indicated by the arrow is transmitted from the father. <i>Red peaks</i> depict size markers.	3. Microsatellite polymorphism analysis at D14S275 family of case 5. The patient demonstrates 3 peaks 48, 152 bp), 2 (146, 148 bp) of which are transmitted					JUWU			1 - M. r		_	D14S275